index.php

Low Emissions and Rapid Catalyst Light Off of an OP2S Engine

The first 200 seconds count when starting an engine. That’s because for many applications, more than 50% of the tailpipe emissions in an FTP-75 are produced in the first 200 seconds of operation after a cold start.
 
To help meet global regulatory standards and reduce cold-start emissions, Achates Power has developed a patent-pending temperature control strategy for achieving higher exhaust temperatures during the catalyst light-off phase than are possible with conventional, four-stroke diesel engines. Continue reading

Oil Consumption Measurements for a Modern OP2S Engine

Historically, opposed-piston, two-stroke (OP2S) engines have set combined records for fuel efficiency and power density. But, because they are piston ported, the engines were mistakenly dismissed for use in emissions-compliant, on-highway vehicle applications due, in part, to oil control concerns.
 
In 1998, however, Achates Power founder Dr. James Lemke began investigating the opposed-piston engine—seeking to prove that the architecture was not only fuel efficient, but could also overcome the inherent challenges with oil consumption and emissions. Continue reading

It Started with a Good Idea. . .

I’ve started a number of companies in my career, in several different industries. While I took my Ph.D. in theoretical physics, I’m a pretty applied guy—I tend to look for new ways to solve problems. In addition to being a physicist, I’m also a private pilot with more than 7,000 hours of flying time. I’ve flown a number of different planes over the years. A multi-engine plane, of course, has the advantage of allowing a pilot to continue flying if one engine fails, but the vast majority of private pilots fly single-engine planes. I began to wonder if there was a way to design an engine that is both light and fuel efficient so that two could be ganged together to drive a single prop, Continue reading

Reducing Fuel Consumption in Medium- and Heavy-Duty Vehicles

Medium- and heavy-duty vehicles use 26% of all U.S. transportation liquid fuels. That’s expected to increase at least until 2035, according to the Department of Energy (DOE) and the Energy Information Administration (EIA). Also of concern are the greenhouse gases emitted by these trucks, begging the question: what can we do about it?
 
In 2008, I was asked, along with 18 other committee members from academia and industry, to participate in a study on how to improve fuel economy in medium- and heavy-duty vehicles. Continue reading

Heavy-Duty Truck Fuel Efficiency and GHG Emissions Standards

Heavy-duty trucks are the fastest growing contributors to greenhouse gas (GHG) emissions within the
transportation sector, producing nearly 20 percent of GHG and accounting for 17 percent of transportation oil consumption. Because of this, the U.S. Energy Independence and Security Act (EISA) of 2007 directed the National Highway Traffic Safety Administration (NHTSA), in consultation with the Department of Energy (DOE) and the Environmental Protection Agency (EPA), to study the fuel efficiency of heavy-duty trucks and to implement, for the first time ever, fuel-efficiency standards for these vehicles. Continue reading

U.S. Energy Boom

There has been a tremendous change in the energy outlook of the United States in just the last few years. U.S. dependence on foreign oil peaked in 2005 and declined dramatically since then, according to the Energy Information Administration. In fact, last year U.S. dependence on foreign oil fell below 50 percent for the first time since 1997. The reason: domestic demand is down and domestic supply is up. Continue reading

A Historical Look at Opposed-Piston Engines

Opposed-piston engines (OPEs) have been around a long time—more than a century to be exact. First manufactured in 1890, these engines continue to be used in ground, marine and aviation applications worldwide. Unlike traditional four-stroke engines, OPEs combine two pistons per cylinder, working in opposite, reciprocating motion. This eliminates the cylinder head and valvetrain—considered among the most complex and costly components in conventional engines and the primary contributors to heat and friction losses.  Continue reading

Why an Internal Combustion Engine?

“Aren’t we all going to drive electric cars soon?”

That’s the question I often get when I tell someone that I work for Achates Power, a company that’s developing a clean, more fuel-efficient diesel engine. My answer: “not likely”.

Since the 1860s, the internal combustion engine (ICE) has played a significant role in transportation. Continue reading

The Story Is in the Data

Not many engine companies publish their technical results. We do, and I’ll tell you why.

Having worked at Ford, Case New Holland and FEV, I’ve evaluated many new engine concepts from multiple engine companies and inventors. Each of these concepts used different technologies and highlighted different benchmarks to validate success. The claims were all extraordinary and very few of these manufacturers ever discussed their technical results in any real detail. Continue reading

Is the Industry Ready for a New Engine?

Since I joined Achates Power, I’ve often been asked, “Can an ‘outside company’ change the 100+ year-old engine business?”  In our industry, there are few historical examples to reference.  The most notable is the Wankel engine, which had some commercial success.  Unfortunately, the engine didn’t deliver on the market’s request for a cleaner alternative. Today, we need dramatically more fuel-efficient engines that also meet emissions and all the other requirements of modern, conventional engines.

Continue reading